ton (1965). To decide between the disordered and the centered-hydrogen models for the structure of RDP, Hamilton's significance test was applied as follows: number of reflections $=129$, number of variables $=25$ (disordered model), number of variables $=22$ (centered model); hypothesis: 'the hydrogen is centered on the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ bond'.

The dimension of the hypothesis is $25-22=3$ and the number of degrees of freedom for the refinement is $129-25$ $=104$. The value of R obtained by interpolating the appropriate table for testing the R-factor ratio (Hamilton, 1965) is $. R_{3,104.0 .005}=1.07$, while the observed R-factor ratio is

$$
\mathscr{R}_{\mathrm{obs}}=\frac{R_{w}(\text { centered })}{R_{w}(\text { disordered })}=\frac{0.0498}{0.0457}=1.09
$$

This indicates that the above hypothesis can be rejected in favor of the disordered hydrogen model at a significance level of better than 0.5% (or at a confidence interval of higher than 99.5%). In other words, the results of our experiment favor the disordered-hydrogen model for the structure of paraelectric $\mathrm{RbH}_{2} \mathrm{PO}_{4}$ in which the proton is displaced on either side of the bond center at positions which are $0.41 \AA$ apart.

This work was carried out while one of the authors (AS) was visiting NRI, Baghdad under the Indo-Iraqi Agreement. We are grateful to Serop Ohannesian for assistance in part of the computation.

References

Bacon, G. E. \& Pease, R. S. (1953). Proc. R. Soc. London, Ser. A, 220, 397-421.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129147.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305 (with modifications by W. C. Hamilton, J. A. Ibers, C. K. Johnson, S. Srikanta \& S. K. Sikka). Oak Ridge National Laboratory, Tennessee. The IBM 370 version is due to A. Sequeira.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids. New York: Benjamin.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Peterson, S. W., Levy, H. A. \& Simonson, S. H. (1953). J. Chem. Phys. 21, 2084-2085.
Srikanta, S. \& Sequeira, A. (1968a). REFINE. A Fortran Program for Refining Crystal Orientation and Cell Parameters. Unpublished.
Srikanta, S. \& Sequeira, A. (1968b). Datared. A Fortran Program for Data Reduction. Unpublished.
Tenzer, L., Frazer, B. C. \& Pepinsky, R. (1958). Acta Cryst. 11, 505-509.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). ORABS. Report ORNL-TM-229 (with modifications by S. Srikanta \& A. Sequeira and modified for the IBM 370 by A. Sequeira). Oak Ridge National Laboratory, Tennessee.

Acta Cryst. (1978). B34, 1042
1-Phenyl-4,5-(D-glucofurano)imidazolidine-2-thione: erratum. By R. Jiménez-Garay, A. López-Castro and R. Márquez, Departamento de Optica y Sección de Física del Departamento de Investigaciones Físicas y Quimicas de la Universidad de Sevilla, Spain
(Received 9 November 1977; accepted 10 November 1977)
A new table of torsion angles for the title compound [Jiménez-Garay, López-Castro \& Márquez, Acla Cryst. (1976), B32, $2115-2118$ | is given.

In Fig. 1 of the paper on the title compound (Jimenez-Garay, López-Castro \& Márquez, 1976) atoms C(10) and C(11) are interchanged with respect to their atomic parameters (Table 1); therefore, the selected torsion angles have been recalculated and are reported in the new Table 4.

Reference

Jiménez-Garay, R., López-Castro, A. \& Márquez, R. (1976). Acta Cryst. B32, 2115-2118.

Table 4. Selected torsion angles $\left({ }^{\circ}\right)$

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$-176 \cdot 6$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)$	$111 \cdot 8$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(7)$	$-175 \cdot 1$
$\mathrm{~S}-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{N}(2)$	179.3
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(11)$	$-116 \cdot 8$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	$-1 \cdot 1$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)$	22.5
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	$-36 \cdot 3$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(9)$	$38 \cdot 0$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(1)$	61.2

$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(1)$	$-115 \cdot 8$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(9)$	163.8
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	-22.7
$\mathrm{~N}(1)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	-119.4
$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	-170.1
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$-177 \cdot 0$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	-62.5
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	-176.6
$\mathrm{~N}(1)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(1)$	-118.3

